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Overview

Information-theoretic clustering in encoder models:
® conceptually simple
® probabilistic (soft)

® kernelizable and applicable to unsupervized learning of
Kernel functions

® computationally attractive (no need to compute
eigenvalues or inverses of the Gram matrix)

® favorably compares with common clustering methods in
some cases
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Overview

Information-theoretic clustering in encoder models:
® conceptually simple
® probabilistic (soft)

® kernelizable and applicable to unsupervized learning of
Kernel functions

® computationally attractive (no need to compute
eigenvalues or inverses of the Gram matrix)

® favorably compares with common clustering methods in
some cases

Work In progress...
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Clarifying the definitions

What Is a cluster?
® “Cluster's members should be close to each other”

® “Bunch’s organs should shut together” (automatic translation
Into Russian and back)

® “A cluster is something found by a clustering algorithm” (an
anonymous machine learner)
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Clarifying the definitions

What Is a cluster?

“Cluster's members should be close to each other”

“Bunch’s organs should shut together” (automatic translation
Into Russian and back)

“A cluster is something found by a clustering algorithm” (an
anonymous machine learner)

a set whose members should satisfy local smoothness
constraints (need to constrain the model)

It IS undesirable to assign unique labels to outliers (high
marginal entropy of cluster labels?)
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Encoder vs Generative Models

Let x € R be a visible pattern, and y € {y1, ...,y } its discrete
unknown cluster label
O

® generative models: My < p(y)p(x]y)
® maximizing the likelihood £ = log p(x'"), ... xM))

® problems with under-constrained models
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Encoder vs Generative Models

Let x € R be a visible pattern, and y € {y1, ...,y } its discrete
unknown cluster label
O

® encoder models: M; & p(X)p(y|x)
® an “unsupervised discriminative” framework

® maximizing the likelihood is meaningless...
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Information-Theoretic Clustering

Goal: learn a mapping x — y
Interprete cluster labels y as unknown codes
maximize coding efficiency

I(x,y) < H(x) — H(x|y) = H(y) — H(ylx)

H(y) = —{log p(y))p(y), H(y|x) = —(og p(y]X))pyixse, B(X) i
the empirical distribution

(Arimoto, Blahut '72; Linsker '88)
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Information-Theoretic Clustering

® Goal: learn a mapping x — vy
® Interprete cluster labels y as unknown codes
® maximize coding efficiency

I(x,y) < H(x) — H(x|y) = H(y) — H(ylx)

® H(y) = —(logp(y))pw) H(ylx) = —(log p(y[x)) pysee. H(x) is
the empirical distribution

® (Arimoto, Blahut '72; Linsker '88)

® Generally quite difficult (entropy of a mixture H(y))...
® but tractable for clustering
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Information-Theoretic Clustering: Motivation

® Generative vs encoder models: what Is more attractive?
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Information-

heoretic Clustering: Motivation

® Generative vs encoder models: what Is more attractive?

Generative models:

® »(x|y) must be a correctly normalized distribution in
x|-dimensional space

® p(x) will typically be a mixture of simple distributions (e.g.

Gaussians)

® a poor fit to curved manifolds unless |y| is large
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Information-Theoretic Clustering: Motivation
® Generative vs encoder models: what Is more attractive?

Generative models:

® »(x|y) must be a correctly normalized distribution in
x|-dimensional space

® p(x) will typically be a mixture of simple distributions (e.g.
Gaussians)

® a poor fit to curved manifolds unless |y| is large
Encoder models:
® »(y|x) may be very complex

® I(x,y) = H(y) — H(y|x) implicitly favors equiprobable
deterministic cluster assignments
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Learning Optimal Parameters

® Constrain p(y|x) to satisfy local smoothness

® A simple choice of the encoder is

p(yj|x(i)) X eXP{—HX(i) — WjHQ/Sj + bj}»

(probability of assigning x\¥ to cluster y;)

® maximize I(x,y) for cluster centers w; € R/, dispersions s,
and biases b,
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Learning Optimal Parameters

® Constrain p(y|x) to satisfy local smoothness

® A simple choice of the encoder is

p(yj|x(i)) X eXP{—HX(i) — WjHQ/Sj + bj}»

(probability of assigning x\¥ to cluster y;)

® maximize I(x,y) for cluster centers w; € R/, dispersions s,
and biases b,

® »(y|x) is similar to the posterior of Gaussian mixtures

® M; = p(x)p(y|x) is trained by maximizing I(x, y)
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Learning Optimal Parameters (Cont.)

® Nonlinear ascent on [(x, y) with

0I(x,y) _ X" —wj) ()
) LS ) 80,

M
ol(x,y) 1 s XY — w12 )
= Mmzlp(yﬂ)(( )) 942 Q

aSj Sj

® Coefficients @§m):

(m) def

(M) |4
o™ 4 10g XD e, (™) | oLy}

p(x")

® (cf ML for mixtures of Gaussians)
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Clustering in Nonlinear Encoder Models

Nonlinear encoders:

p(y;Ix") oc exp{—[lp(x7) — w;||*/s; + b;1,

o (x)) € RI?l is a feature vector for pattern x(?)
|| may be oco-dimensional.

x(W, x(*) are likely to be clustered as y; if they lie close to an
unknown cluster center w, Iin a feature space
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Clustering in Nonlinear Encoder Models

Nonlinear encoders:

p(y;Ix") oc exp{—[lp(x7) — w;||*/s; + b;1,

Kernelization is straight-forward:

K & {KZ]} def {(p(x(i))Tqb(x(j))} = K(®) e RMxM

wy =M a,0(™) +wh, where (w})T(x™) = 0
maximize I(x,y) for {a;n,}, s;, b;, and kernel parameters ©

(Again, numerical ascent on /(x,y))
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Learning Kernels

g
01 (x O .. (x(m)
Py —ZKL ) lp(w)) Y2 P )
k=1
Myl
1 of;(x ) p(y; X))
T;; Py log p(y;)

p(y;[x"™) oc exp{—f;(x™)}
® potentials f;(x"™):
fi(x™) = {— (Kpm — 2k (x™a; + a?Kaj +¢5) /s;}

® numerical ascent on I(x,y) ~ O(M|y|?)

® no need to compute eigenvalues of K ¢ RM*M
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Experiments:

Gaussian mixture clustering for |y|=2

K-means clustering for |y|=2
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® Clustering: p(yj\x(i)) x {—H¢(X(i)) — WjHQ/Sj}

® unsupervised clustering, nonlinear encoder

“ favorably compares with GMMs, k-means, kernel k-means, normalized cuts [Ng et. al. '01],

non-kernelized MI, fixed-kernel KMI
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Experiments:

Gaussian mixture clustering

Simple MI clustering
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® Clustering: p(y;[x(9) o {—||p(xD) — w;||2/s;}

® unsupervised clustering, nonlinear encoder

® favorably compares with GMMs, k-means, kernel k-means, normalized cuts [Ng et. al. '01],
non-kernelized MI, fixed-kernel KMI
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Summary

® unsupervised information-theoretic clustering

® extracts clusters directly from the dataset

® conceptually simple

® suggests a principled way to learn the kernels

® potentially generalizable to other encoder models

Still need: practical applications; theoretical analysis (links to
wheighted annealed feature-space k-means?)
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