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Overview

Information-theoretic clustering in encoder models:

conceptually simple

probabilistic (soft)

kernelizable and applicable to unsupervized learning of
kernel functions

computationally attractive (no need to compute
eigenvalues or inverses of the Gram matrix)

favorably compares with common clustering methods in
some cases
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Overview

Information-theoretic clustering in encoder models:

conceptually simple

probabilistic (soft)

kernelizable and applicable to unsupervized learning of
kernel functions

computationally attractive (no need to compute
eigenvalues or inverses of the Gram matrix)

favorably compares with common clustering methods in
some cases

Work in progress...
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Clarifying the definitions

What is a cluster?

“Cluster’s members should be close to each other”

“Bunch’s organs should shut together” (automatic translation
into Russian and back)

“A cluster is something found by a clustering algorithm” (an
anonymous machine learner)
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Clarifying the definitions

What is a cluster?

“Cluster’s members should be close to each other”

“Bunch’s organs should shut together” (automatic translation
into Russian and back)

“A cluster is something found by a clustering algorithm” (an
anonymous machine learner)

a set whose members should satisfy local smoothness
constraints (need to constrain the model)

it is undesirable to assign unique labels to outliers (high
marginal entropy of cluster labels?)
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Encoder vs Generative Models

Let x ∈ R
|x| be a visible pattern, and y ∈ {y1, . . . , y|y|} its discrete

unknown cluster label
y

x

ML

generative models: ML
def
= p(y)p(x|y)

maximizing the likelihood L = log p(x(1), . . . , x(M))

problems with under-constrained models
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Encoder vs Generative Models

Let x ∈ R
|x| be a visible pattern, and y ∈ {y1, . . . , y|y|} its discrete

unknown cluster label
x

y

MI

encoder models: MI
def
= p̃(x)p(y|x)

an “unsupervised discriminative” framework

maximizing the likelihood is meaningless...
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Information-Theoretic Clustering

Goal: learn a mapping x → y

interprete cluster labels y as unknown codes

maximize coding efficiency

I(x, y)
def
= H(x) − H(x|y) ≡ H(y) − H(y|x)

H(y) ≡ −〈log p(y)〉p(y), H(y|x) ≡ −〈log p(y|x)〉p(y|x)p̃(x), p̃(x) is
the empirical distribution

(Arimoto, Blahut ’72; Linsker ’88)
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Information-Theoretic Clustering

Goal: learn a mapping x → y

interprete cluster labels y as unknown codes

maximize coding efficiency

I(x, y)
def
= H(x) − H(x|y) ≡ H(y) − H(y|x)

H(y) ≡ −〈log p(y)〉p(y), H(y|x) ≡ −〈log p(y|x)〉p(y|x)p̃(x), p̃(x) is
the empirical distribution

(Arimoto, Blahut ’72; Linsker ’88)

Generally quite difficult (entropy of a mixture H(y))...

but tractable for clustering
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Information-Theoretic Clustering: Motivation

Generative vs encoder models: what is more attractive?
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Information-Theoretic Clustering: Motivation

Generative vs encoder models: what is more attractive?

Generative models:

p(x|y) must be a correctly normalized distribution in
|x|-dimensional space

p(x) will typically be a mixture of simple distributions (e.g.
Gaussians)

a poor fit to curved manifolds unless |y| is large
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Information-Theoretic Clustering: Motivation

Generative vs encoder models: what is more attractive?

Generative models:

p(x|y) must be a correctly normalized distribution in
|x|-dimensional space

p(x) will typically be a mixture of simple distributions (e.g.
Gaussians)

a poor fit to curved manifolds unless |y| is large

Encoder models:

p(y|x) may be very complex

I(x, y) = H(y) − H(y|x) implicitly favors equiprobable
deterministic cluster assignments
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Learning Optimal Parameters

Constrain p(y|x) to satisfy local smoothness

A simple choice of the encoder is

p(yj|x
(i)) ∝ exp{−‖x(i) − wj‖

2/sj + bj},

(probability of assigning x(i) to cluster yj)

maximize I(x, y) for cluster centers wj ∈ R
|x|, dispersions sj,

and biases bj
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Learning Optimal Parameters

Constrain p(y|x) to satisfy local smoothness

A simple choice of the encoder is

p(yj|x
(i)) ∝ exp{−‖x(i) − wj‖

2/sj + bj},

(probability of assigning x(i) to cluster yj)

maximize I(x, y) for cluster centers wj ∈ R
|x|, dispersions sj,

and biases bj

p(y|x) is similar to the posterior of Gaussian mixtures

MI = p̃(x)p(y|x) is trained by maximizing I(x, y)
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Learning Optimal Parameters (Cont.)

Nonlinear ascent on I(x, y) with

∂I(x, y)

∂wj

=
1

M

M
∑

m=1

p(yj |x
(m))

(x(m) − wj)

sj

α
(m)
j

∂I(x, y)

∂sj

=
1

M

M
∑

m=1

p(yj |x
(m))

‖x(m) − wj‖
2

2s2
j

α
(m)
j

Coefficients α
(m)
j :

α
(m)
j

def
= log

p(x(m)|yj)

p(x(m))
− KL

(

p(y|x(m))‖〈p(y|x)〉p̃(x)

)

(cf ML for mixtures of Gaussians) Information-Theoretic Clustering in Nonlinear Encoder Models – p. 8/12



Clustering in Nonlinear Encoder Models

Nonlinear encoders:

p(yj|x
(i)) ∝ exp{−‖φ(x(i)) − wj‖

2/sj + bj},

φ(x(i)) ∈ R
|φ| is a feature vector for pattern x(i)

|φ| may be ∞-dimensional.

x(i), x(k) are likely to be clustered as yj if they lie close to an
unknown cluster center wj in a feature space
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Clustering in Nonlinear Encoder Models

Nonlinear encoders:

p(yj|x
(i)) ∝ exp{−‖φ(x(i)) − wj‖

2/sj + bj},

Kernelization is straight-forward:

K
def
= {Kij}

def
= {φ(x(i))T φ(x(j))} = K(Θ) ∈ R

M×M

wj =
∑M

m=1 αmjφ(x(m)) + w⊥
j , where (w⊥

j )T φ(x(m)) = 0

maximize I(x, y) for {αjm}, sj, bj, and kernel parameters Θ

(Again, numerical ascent on I(x, y))
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Learning Kernels

∂I(x, y)

∂Θ
=

1

M

M
∑

m=1

KL(p(y|x(m))‖p(y))

|y|
∑

k=1

∂fk(x
(m))

∂Θ
p(yk|x

(m)) −

1

M

M
∑

m=1

|y|
∑

j=1

∂fj(x
(m))

∂Θ
p(yj|x

(m)) log
p(yj|x

(m))

p(yj)

p(yj|x
(m)) ∝ exp{−fj(x

(m))}

potentials fj(x
(m)):

fj(x
(m)) ≡

{

−
(

Kmm − 2kT (x(m))aj + aT
j Kaj + cj

)

/sj

}

numerical ascent on I(x, y) ∼ O(M |y|2)

no need to compute eigenvalues of K ∈ R
M×M
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Experiments:
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Gaussian mixture clustering for |y|=2
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K−means clustering for |y|=2
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Simple KMI clustering, β
0
 =1
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KMI Clustering, |y|=2, learned β = 0.6035 (starting from β
0
=1)

Clustering: p(yj |x
(i)) ∝ {−‖φ(x(i)) − wj‖

2/sj}

unsupervised clustering, nonlinear encoder

favorably compares with GMMs, k-means, kernel k-means, normalized cuts [Ng et. al. ’01],
non-kernelized MI, fixed-kernel KMI
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Experiments:
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Gaussian mixture clustering
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Simple MI clustering
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KMI Clustering, β = 1
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4 KMI Clustering: β ≈ 0.579 (β
0
 = 1), I = 1.10

                                                           

Clustering: p(yj |x
(i)) ∝ {−‖φ(x(i)) − wj‖

2/sj}

unsupervised clustering, nonlinear encoder

favorably compares with GMMs, k-means, kernel k-means, normalized cuts [Ng et. al. ’01],
non-kernelized MI, fixed-kernel KMI
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Summary

unsupervised information-theoretic clustering

extracts clusters directly from the dataset

conceptually simple

suggests a principled way to learn the kernels

potentially generalizable to other encoder models

Still need: practical applications; theoretical analysis (links to
wheighted annealed feature-space k-means?)
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